Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Simulation of the Solid Rivet Installation Process

2010-09-28
2010-01-1843
The riveting process with a solid rivet is one of the most applied joining processes in the aeronautic industry. New materials and new design requirements constitute challenges that drive the users to a better understanding of the installation process of riveted joints. Therefore, this study aims with the aid of FEM simulation to understand the phenomena occurring during the installation process and afterwards to predict the mechanical properties of the riveted joint depending on the installation parameters and characteristics of the adherends. The experimental installation process for the validation of the simulation model takes place in a fully automated C-frame riveting machine with all-electric drilling and riveting operations aptitude and continuous collection of process data. This paper deals with the simulation of the installation process. The simulation model consists of a solid rivet with universal head described by the standard EN6081 and aluminum (2024-T351) adherends.
Journal Article

Expanding the Use of Robotics in Airframe Assembly Via Accurate Robot Technology

2010-09-28
2010-01-1846
Serial link articulated robots applied in aerospace assembly have largely been limited in scope by deficiencies in positional accuracy. The majority of aerospace applications require tolerances of +/−0.25mm or less which have historically been far beyond reach of the conventional off-the-shelf robot. The recent development of the accurate robot technology represents a paradigm shift for the use of articulated robotics in airframe assembly. With the addition of secondary feedback, high-order kinematic model, and a fully integrated conventional CNC control, robotic technology can now compete on a performance level with customized high precision motion platforms. As a result, the articulated arm can be applied to a much broader range of assembly applications that were once limited to custom machines, including one-up assembly, two-sided drilling and fastening, material removal, and automated fiber placement.
Journal Article

Fabrication of Titanium Aerospace Hardware using Elevated Temperature Forming Processes

2010-09-28
2010-01-1834
Titanium is a difficult material to fabricate into complex configurations. There is several elevated temperature forming processes available to produce titanium components for aerospace applications. The processes to be discussed are Superplastic Forming (SPF), hot forming and creep forming. SPF uses a tool that contains the required configuration and seals around the periphery so inert gas pressure can be used to form the material. Of the processes to be discussed, this is the one that can produce the most complex shapes containing the tightest radii. A variation of the process combines an SPF operation with diffusion bonding (SPF/DB) of two or more pieces of titanium together to produce integrally stiffened structure containing very few fasteners. Another process for shaping titanium is hot forming. In this process, matched metal tools, offset by the thickness of the starting material, are used to form the part contour at elevated temperature.
Journal Article

Applied Accurate Robotic Drilling for Aircraft Fuselage

2010-09-28
2010-01-1836
Once limited by insufficient accuracy, the off-the-shelf industrial robot has been enhanced via the integration of secondary encoders at the output of each of its axes. This in turn with a solid mechanical platform and enhanced kinematic model enable on-part accuracies of less than +/−0.25mm. Continued development of this enabling technology has been demonstrated on representative surfaces of an aircraft fuselage. Positional accuracy and process capability was validated in multiple orientations both in upper surface (spindle down) and lower surface (spindle up) configurations. A second opposing accurate robotic drilling system and full-scale fuselage mockup were integrated to simulate doubled throughput and to demonstrate the feasibility of maintaining high on-part accuracy with a dual spindle cell.
Journal Article

Bird and Tyre Impact Analysis on Landing Gear

2013-12-20
2013-01-9002
As part of the aircraft certification process, landing gear has to be certified against particular risks such as bird and tyre impact cases. According to international aviation regulations, it has to be demonstrated that the landing gear is designed to ensure the capability for continued safe flight and landing after bird impact or after tyre impact resulting from wheel or tyre failure. Structural parts such as the down-lock mechanism must be validated against these requirements since their structural integrity is essential to ensure landing gear down-locking for landing and subsequent on ground movement. Recently, MESSIER-BUGATTI-DOWTY has been involved in the development of explicit analysis in support of bird and tyre impact justification. A model of the down-lock mechanism has been developed and a full scale test has been set up in order to demonstrate the validity of the analysis.
Journal Article

Detailed Analysis of Variables Affecting Wing Kinematics of Bat Flight

2013-12-20
2013-01-9003
Body motions of flying animals can be very complex, especially when the body parts are greatly flexible and they interact with the surrounding fluid. The wing kinematics of an animal flight is governed by a large number of variables and thus the measurement of complete flapping flight is not so simple, making it very complex to understand the contribution of each parameter to the performance and hence, to decide the important parameters for constructing the kinematic model of a bat is nearly impossible. In this paper, the influence of each parameter is uncovered and the variables that a specified reconstruction of bat flight should include in order to maximally reconstruct actual dimensional complexity, have been presented in detail. The effects of the different kinematic parameters on the lift coefficient are being resulted.
Journal Article

Validation of a Boost Circuit Model Using Acceptance Sampling

2014-09-16
2014-01-2104
Cost and performance requirements are driving military and commercial systems to highly integrated, optimized systems which require more sophisticated, highly complex controls. To realize benefits and make confident decisions, the validation of both plant and control models becomes critical. To quickly develop controls for these systems, it is beneficial to develop models and determine the uncertainty of those models so as to predict performance and stability. A process of model validation for a boost circuit based on acceptance sampling is presented here. The validation process described in this paper includes the steps of defining requirements, performing a screening and exploration of the system, completing a system and parameter identification, and finally executing a validation test. To minimize the cost of experimentation and simulation, design of experiments is used extensively to limit the amount of data taken without losing information.
Journal Article

A Comparison between Regular and Vibration-Assisted Drilling in CFRP/Ti6Al4V Stack

2014-09-16
2014-01-2236
As aircraft programs currently ramp up, productivity of assembly processes needs to be improved while keeping quality, reliability and manufacturing cost requirements. Efficiency of the drilling process still remains an issue particularly in the case of CFRP/metal stacks: hot and long metallic chips are difficult to remove and often damage the surface of CFRP holes. Low frequency axial vibration drilling has been proposed to solve this issue. This innovative drilling process allows breaking up the metallic chips in such a way that jamming is avoided. This paper presents a case of CFRP/Ti6Al4V drilling on a CNC machine where productivity must be increased. A comparison is made between the current regular process and the MITIS drilling process. First the analysis and comparison method is presented. The current process is analyzed and its limits are highlighted. Then the vibration process is implemented and its performances are studied.
Journal Article

Dry Drilling of Stackup Composite: Benefits of CO2 Cooling

2014-09-16
2014-01-2234
The use of composite materials and composite stackups (CO-Ti or CO-Al) in aerospace and automotive applications has been and will continue to grow at a very high rate due to the high strength and low weight of the materials. One key problem manufacturers have using this material is the ability to efficiently drill holes through the layers to install fasteners and other components. This is especially true in stackups of CFRP and titanium due to the desire of drilling dry for the CFRP layer and the need for cooling when drilling the high strength Ti layer. By using CO2 through tool cooling, it is possible to protect both layers. Through work supported by the National Science Foundation (NSF) and Department of Energy (DOE) it is shown that CO2 through tool cooling productivity can be significantly increased while maintaining required hole tolerances in both the composite and Ti layers. Improvements in tool life have been demonstrated when compared to either emulsion or dry drilling.
Journal Article

Five Strategies for Improving Aerospace Supply Chain Quality Management and Performance

2014-09-16
2014-01-2231
Aerospace suppliers face the daunting task of constantly improving time-to-market, reducing cost of quality and turning compliance into a competitive advantage. Managing to these constraints while staying profitable is a challenge faced by the entire aerospace supply chain face today. The intent of this presentation is to share five lessons learned on how aerospace suppliers can optimize for these three constraints while growing their businesses. The first is electronically enabling traceability both within a multi-tier supply chains and throughout suppliers. Automating traceability at the shop floor improves quality management and accelerates compliance. Specific methodologies and metrics used to accomplish this will be provided. Second, lessons learned from implementing Manufacturing Execution Systems (MES) showing how shop floor visibility has a direct effect on supplier performance is illustrated with case studies and metrics.
Journal Article

Robot Accuracy: Online Compensation (EU COMET Project)

2014-09-16
2014-01-2257
The 30 month COMET project aims to overcome the challenges facing European manufacturing industries by developing innovative machining systems that are flexible, reliable and predictable with an average of 30% cost efficiency savings in comparison to machine tools. From a conceptual point of view, industrial robot technology could provide an excellent base for machining being both flexible and cost efficient. However, industrial robots lack absolute positioning accuracy, are unable to reject disturbances in terms of process forces and lack reliable programming and simulation tools to ensure right first time machining, once production commences. These three critical limitations currently prevent the use of robots in typical machining applications. The COMET project is co-funded by the European Commission as part of the European Economic Recovery Plan (EERP) adopted in 2008.
Journal Article

A New Robotic Vibration-Drilling Process

2014-09-16
2014-01-2258
In today's aircraft assembly process several new features make drilling operations very challenging according to production requirements. Parts are made of thin or thick multi-material stacks with a large scope to cover and complex assembly sequences. In addition, the current ramp-up in aircraft programs involves to improve productivity while keeping process quality and reliability. In this context robotic solution meets perfectly all these requirements as it is flexible, reconfigurable, fast and agile. Among the possible end-effectors, the Barrel Multi-Function End Effector (BMFEE) appears to be the most flexible solution to allow many different process configurations. The latest developments have been focused on the drilling equipment of this BMFEE. In fact the drilling process efficiency can be constantly improved especially in terms of reliability, quality and productivity. Therefore vibration-assisted drilling system has been integrated into the BMFEE drilling module.
Journal Article

Laser Profilometry For Non-Contact Automated Countersink Diameter Measurement

2014-09-16
2014-01-2255
Automated countersink measurement methods which require contact with the workpiece are susceptible to a loss of accuracy due to cutting debris and lube build-up. This paper demonstrates a non-contact method for countersink diameter measurement on CFRP which eliminates the need for periodic cleaning. Holes are scanned in process using a laser profilometer. Coordinates for points along the countersink edge are processed with a unique filtering algorithm providing a highly repeatable estimate for major and minor diameter.
Journal Article

Robot Accuracy: Offline Compensation (EU COMET Project)

2014-09-16
2014-01-2256
The 30 month COMET project aims to overcome the challenges facing European manufacturing industries by developing innovative machining systems that are flexible, reliable and predictable with an average of 30% cost efficiency savings in comparison to machine tools. From a conceptual point of view, industrial robot technology could provide an excellent base for machining being both flexible and cost efficient. However, industrial robots lack absolute positioning accuracy, are unable to reject disturbances in terms of process forces and lack reliable programming and simulation tools to ensure right first time machining, once production commences. These three critical limitations currently prevent the use of robots in typical machining applications. The COMET project is co-funded by the European Commission as part of the European Economic Recovery Plan (EERP) adopted in 2008.
Journal Article

Production Optimization of Automated Fastening Systems with Efficiency Software and Machine Remote Access in the Airframe Industry

2014-09-16
2014-01-2265
The demand of fulfilling increasing Prime Customer requirements forces Tier 1 suppliers to continually improve their system solutions. Typically, this will involve integration of “state of the art” tools to afford the Tier 1 supplier a throughput and cost advantage. The subject “Production Optimization Approach” addresses the machine and process optimization of automated fastening machines in operation at customer factories. The paper will describe and focus on the main aspects of production optimization of existing machines to meet and exceed the required customer production and reporting criteria. Furthermore, the paper will present existing examples based on use of the established diagnostic tools
Journal Article

Numerical Investigation of the Rivet Installation in an Adhesively Bonded Joint and the Load Transfer in a Bolted/Bonded Hybrid Joint

2014-09-16
2014-01-2242
Hybrid (bolted/bonded) joining is becoming one of the innovative joining processes for light weight structures in the transport industry, especially in the aerospace industry where weight reduction and high joining requirements are permanent challenges. Combining the adhesive bonding with the mechanical joining -riveting for instance- can lead to an enhancement of the properties of the joint compared to the wide established riveting, as a result of a synergistic load bearing interaction between the fastener and the adhesive bondline. The influence of the rivet installation process on a hybrid joint regarding the joint stress state, the change of the bondline thickness as well as its effects on the joint performance and load transfer are some of the factors that drive the users to a better understanding of the hybrid joining process.
Journal Article

Real Time Path Correction of Industrial Robots with Direct End-Effector Feedback from a Laser Tracker

2014-09-16
2014-01-2248
In contemporary industries the demand for very accurate robots is continuously growing. Yet, robot vendors are limited in the achievable accuracy of their robots, as they have no means to provide a direct end-effector feedback. Therefore, most approaches aim to identify an accurate model of the robotic system, thus providing compensation factors to correct the deflections. Models, however, are unable to represent the real physical system in a sufficient manner for path correction. The non-linearities in robotic systems are difficult to model and the dynamics cannot be neglected. A better approach is, therefore, to use direct end-effector position and orientation feedback from an external sensor as, e.g. a Leica laser tracker. The measured data can directly be compared to the nominal data from the path interpolator. Hence, the data are independent of the kinematic robot model.
Journal Article

Characterization of Flow Drill Screwdriving Process Parameters on Joint Quality

2014-09-16
2014-01-2241
A state of the art proprietary method for aluminum-to-aluminum joining in the automotive industry is Resistance Spot Welding. However, with spot welding (1) structural performance of the joint may be degraded through heat-affected zones created by the high temperature thermal joining process, (2) achieving the double-sided access necessary for the spot welding electrodes may limit design flexibility, and (3) variability with welds leads to production inconsistencies. Self-piercing rivets have been used before; however they require different rivet/die combinations depending on the material being joined, which adds to process complexity. In recent years the introductions of screw products that combine the technologies of friction drilling and thread forming have entered the market. These types of screw products do not have these access limitations as through-part connections are formed by one-sided access using a thermo-mechanical flow screwdriving process with minimal heat.
Journal Article

Methodology for Classification of Shim Materials

2014-09-16
2014-01-2253
As a result of the increasing use of fibre reinforced plastic (FRP) components in a modern commercial aircraft, manufacturers are facing new challenges - especially with regards to the realisation of significant build rates. One challenge is the larger variation of the thickness of FRP components compared with metal parts that can normally be manufactured within a very narrow thickness tolerance bandwidth. The larger thickness variation of composite structures has an impact on the shape of the component and especially on the surfaces intended to be joined together with other components. As a result, gaps between the components to be assembled could be encountered. However, from a structural point of view, gaps can only be accepted to a certain extent in order to maintain the structural integrity of the joint. Today's state of the art technologies to close gaps between FRP structures comprise shimming methods using liquid and solid shims.
Journal Article

E7000 ARJ -Manual Flexible Tooling for Horizontal Riveting System

2014-09-16
2014-01-2250
Electroimpact has designed and manufactured a flexible tooling system for the E7000-ARJ horizontal panel riveter. This tooling design accommodates panel sizes from 3.5m to 10m long, with a variety of straight and tapered curvatures. The tooling is re-configured manually and utilizes removable index plates that can be adapted to accommodate new panel types. This type of tooling is ideal for value-conscious applications where a single machine must process a large range of panel styles. Electroimpact is currently using this system to tool 17 different styles of pre-tacked panels on a single E7000-ARJ machine. This flexible system does not require large removable form boards or custom frames that index one type of panel. Instead it uses 4 form boards that are permanently mounted to the picture frame by linear rails, allowing them to index anywhere along the 10m working envelope.
X